

Combat Vehicle Engine Selection Methodology Based on Vehicle Integration Considerations

US Army RDECOM / TARDEC

Charles Raffa Ernest Schwarz John Tasdemir

SAE 2005-01-1545

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 13 APR 2005		2. REPORT TYPE N/A		3. DATES COVE	ERED	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Combat Vehicle Engine Selection Methodology Based on V			7 ehicle 5b. GRANT NUMBER		MBER	
Integration Considerations 6. AUTHOR(S) Raffa, Charles; Schwarz, Ernest; Tasdemir, John				ELEMENT NUMBER		
			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USA TACOM 6501 E 11 MILE ROAD WARREN, MI 48397-5000			8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM TARDEC		
				11. SPONSOR/M NUMBER(S) 14801	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO Presented at SAE	otes World Congress 200	5, The original doc	ument contains co	olor images.		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	18	RESI ONSIBLE I ERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Engine Selection Methodology Outline

- Definition of the Propulsion System for Military Applications
- Advanced Integrated Propulsion System (AIPS) Power Pack
- Assessment of the Overall System Power Density Potential
 - Cooling System and Parasitic Fan Power Sizing
 - Inlet and Exhaust System Impact
 - Mission Fuel Determination
 - Propulsion System Volume Estimates
- Conclusions

Combat Vehicle Problem Power Dense Engine Not Sufficient

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Need high power density of complete propulsion system *

- Engine
- * Transmission including steering and brakes for tracked vehicle
- Cooling system
- * Air filtration system
- Inlet and exhaust ducting
- Propulsion control system
- Accessory drive interfaces
- * Batteries (for propulsion), wiring harnesses
- Fuel tanks and plumbing (sized for mission requirement)
- Final drives
- Maintenance access and clearances
- Unusable volume
- Power pack is that subset of the propulsion system that lifts or rolls out for replacement or periodic checks. Typically includes engine, transmission, air filtration, cooling and control systems.

Advanced Integrated Propulsion System (AIPS) Power Pack

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Began in 1982 to replace Abrams
 Main Battle Tank propulsion system

- Increased Power Density
- Improved Fuel Economy
- Improved Maintainability
- Power Density Comparison
 - AIPS 6 sprocket hp/ft³
 - Abrams 3.26 sprocket hp/ft³
- AIPS Evaluated Power Systems
 - AIPS Turbine
 - * AIPS Diesel

AIPS Turbine and Diesel Concentration

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

- High Efficiency Components
- Dense Component Packaging
- Reduction of Parasitic Losses Throughout the System
- Engine Technologies Specific to the Diesel or Turbine types

Turbine AIPS Efforts

- Higher Turbine Inlet Temp
- High Recuperator Effectiveness
- Reduced Pressure Losses
 - Reduced Air Consumption
 - Improved Fuel Efficiency

Diesel AIPS Efforts

- Improved Engine Power Density
- Improved Fuel Consumption
- Low Heat Rejection
- Higher Coolant Temp Technologies

Volumetric Comparison: AIPS and Abrams Engine

Power Density Differences

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Primary Differences Between AIPS and Abrams Propulsion Systems

- Density of Packaging
- Air Consumption Differences
- Fuel Consumption Differences
- Heat Rejection Differences
- Parasitic Loss Differences
- 1 & 5 are primarily controlled by propulsion integrator and component supporters
- 2, 3 & 4 are primarily controlled by engine developer

AIPS vs. Marine Propulsion

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

During AIPS development a new power dense diesel appears

AIPS Diesel

- 1500 rated HP @ 2600 rpm
- 12 Cylinders
- 28 Liter Displacement
- 4 Stroke / Cycle
- Single Stage VG Turbocharger
- Synthetic Oil Cooling Fluid
- ❖ 340° F Max Coolant Temp Out
- Air to Oil After Cooling
- ❖ 34 ft³ Engine Dunk Volume

Marine Diesel

- ❖ 1500 rated HP @ 1800 rpm
- 3 Cylinders
- 7 Liter Displacement
- 2 Stoke / Cycle
- 3 Stage Turbocharger
- Water / Glycol Cooling Fluid
- 230° F Max Coolant Temp Out
- ❖ Air to H₂O Jacket After Cooling
- ❖ 20 ft³ Engine Dunk Volume

New diesel smaller but system analysis shows AIPS diesel propulsion system more power dense based on cooling alone.

Manned Ground Vehicle Integration

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Early 2000s, Engine Program Development

- Known need for high power density propulsion system
 Unknown platform characteristics
 - ❖ Weight?
 - Front or Rear Propulsion?
 - * Tracked or Wheeled Vehicle?
 - * Power Pack Shape or Size?

Engine development only – remainder of power pack later

Simple methodology developed for system power density potential considering only the engine development

Methodology Descriptions

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Methodology addresses:

- Certain engine characteristics
- Required cooling system impacts
- Inlet & exhaust duct impact
- Impact of required onboard fuel

Methodology doesn't address:

- Potential tight packaging
- Opportunity for synergistic parasitic reductions

Results in:

- System volume estimate
- ❖Power density estimate

Methodology Estimates Space Claims or Volumes

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Methodology involves estimating volumes for:

- 1. Engine
- 2. Transmission
- 3. Cooling System
- 4. Air Filtration System
- 5. Inlet & Exhaust Ducting
- 6. Controls
- 7. Miscellaneous
- 8. Batteries
- 9. Electrical Harness
- 10. Fuel System for Onboard Fuel
- 11.Final Drive
- 12. Clearance & Unusable Volumes

Sum of these = Propulsion System Volume

Methodology Estimates Net Available Power

SUPERIOR TECHNOLOGY FOR A SUPERIOR ARMY

Methodology estimates net available power

- Engine Gross Horsepower
- Subtract Estimates For:
 - Installation Loss
 - Air Filter Scavenge Fan (if any)
 - Power Loss Due to Induction & Exhaust Restrictions
 - Transmission Power Losses
 - Final Drive Power Losses
- * To Arrive at Estimated Net or Sprocket Horsepower

	AIPS Diesel Hot Day	7L 2 Stroke Hot Day	7L 2 Stroke Hot Day
Engine	6 In Core	5.3 In Core	7.5 In Core
Engine / Application Characteristics			
Engine [hp]	1500	1500	1500
Engine Dunk Volume [ft³]	34	20	20
Engine Specific Heat Rejection [Btu / hp·min]	20	40	40
Engine Induction Air Flow [lbs / hr]	14400	18500	18500
BSFC at Full Power [lbs / hp-hr]	0.37	0.39	0.39
Engine Heat Rejection [Btu / min]	30000	60300	60300
Vehicle Weight [tons]	60	60	60
Cooling System Size / Parasitic (Fan) Power Sizing			
Heat Exchanger Type: Oil to Air or H ₂ O to Air	Oil to Air	H ₂ O to Air	H ₂ O to Air
Power Pack Net Horsepower [hp]	1077.4	866.51	947.92
Fan Power [hp]	103.26	366.86	265.10
Cooling System Volume [ft³]	25.80	64.15	60.31

	AIPS Diesel Hot Day	7L 2 Stroke Hot Day	7L 2 Stroke Hot Day
Engine	6 In Core	5.3 In Core	7.5 In Core
Engine Application Characteristics			
Engine [hp]	1500	1500	1500
Engine Dunk Volume [ft³]	34	20	20
Engine Specific Heat Rejection [Btu / hp·min]	20	40.2	40.2
Engine Induction Air Flow [lbs / hr]	14400	18500	18500
BSFC at Full Power [lbs / hp·hr]	0.37	0.39	0.39
Engine Heat Rejection [Btu / min]	30000	60300	60300
Vehicle Weight [tons]	60	60	60
Inlet and Exhaust System Impact			
Air filter System Size [ft³]	10	12.85	12.85
Inlet and Exhaust System Volume [ft³]	2.06	2.64	2.64
Installation Loss (Intake and Exhaust Loss) [hp]	50.00	50.00	50.00

	AIPS Diesel Hot Day	7L 2 Stroke Hot Day	7L 2 Stroke Hot Day	
Engine	6 In Core	5.3 In Core	7.5 In Core	
Engine Application Characteristics				
Engine [hp]	1500	1500	1500	
Engine Dunk Volume [ft³]	34	20	20	
Engine Specific Heat Rejection [Btu / hp·min]	20	40.2	40.2	
Engine Induction Air Flow [lbs / hr]	14400	18500	18500	
BSFC at Full Power [lbs / hp hr]	0.37	0.39	0.39	
Engine Heat Rejection [Btu / min]	30000	60300	60300	
Vehicle Weight [tons]	60	60	60	
Mission Fuel Determination @ 60 Net hp*hr / ton				
Gallons Fuel (for 60 net hp·hrs/ton) [gallons]	266.91	349.81	319.77	
Weight of Fuel [lbs]	1780.29	2333.21	2132.83	
Volume of Fuel [ft³]	35.68	46.76	42.75	

	AIPS Diesel Hot Day	7L 2 Stroke Hot Day	7L 2 Stroke Hot Day		
Engine	6 In Core	5.3 In Core	7.5 In Core		
Engine Application Characteristics					
Engine [hp]	1500	1500	1500		
Engine Dunk Volume [ft³]	34	20	20		
Engine Specific Heat Rejection [Btu / hp·min]	20	40.2	40.2		
Engine Induction Air Flow [lbs / hr]	14400	18500	18500		
BSFC at Full Power [lbs / hp·hr]	0.37	0.39	0.39		
Engine Heat Rejection [Btu / min]	30000	60300	60300		
Vehicle Weight [tons]	60	60	60		
Propulsion System Volume Estimate					
Total Propulsion System Volume [ft³]	177.32	224.24	212.19		
Sprocket Power [hp]	1055.85	849.18	928.96		
Propulsion Power Density [sprocket hp / ft³]	5.95	3.79	4.38		

Conclusions

- The most power dense engine doesn't always provide the most power dense system.
- Widely different prime power systems like diesel or turbine engines, fuel cells or alternative fuel engines can be fairly compared on a system to system basis.
- Similar approach can be used to evaluate other concerns like weight or affordability.

